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Abstract

This report serves as an introduction to the related topics of simulating diffusions and
option pricing. Specifically, it considers diffusions that can be specified by stochastic
diferential equations by dX: = a(X, t)dt + o(X¢,t)dWs, and pricing Asian options, a
type of path-dependent options where no general pricing formula is known. Two nu-
meric approximations of X;, the Euler and the Milstein, are derived through application
of It&’s lemma. It shows that the Euler has an error order O(At) and the Milstein has
error order O(At)3/ 2. Geometric brownian motion and the Ornstein-Ulhbeck process
are simulated using the Euler method and solved analytically using the method of re-
duction. The Euler approximation is used with Monte Carlo methods to estimate the
price of Asian options. The price estimates obtained from Monte Carlo simulation are

compared to the analytic Black-Scholes formula.

*Department of Statistics; University of California, Berkeley.
I thank Prof. Chris Heyde, Columbia University, for his comments and advice.



Contents

Introduction
It6 Processes and Calculus
Simulating Stochastic Differential Equations

Solving Stochastic Differential Equations
4.1 Reducible Stochastic Differential Equations . . . . . .. ... .. .. ... ..

Examples and Simulations
5.1 Geometric Brownian Motion . . . . . . . .. ... .. L oo

5.2 Ornstein-Uhlenbeck process . . . . . . . . . . .. . ... .

Options Theory

6.1 Options Basics . . . . . . . . .

6.2 The Black-Scholes Formula . . . . ... ... ... ... ... ...

6.3 Monte Carlo Pricing . . . . . . . . . . .
6.3.1 Example: Pricing a European Call . . . . . . .. ... ... ... ...

6.4 Asian Options . . . . . . . . . . . L
6.4.1 Example: Pricing an Asian Option . . . . . . ... .. ... .. ....

Conclusion

Appendix
A.1 Solving the Geometric Brownian Motion SDE through Coefficient Matching .

Program Code

Bl sdessim. . . . ... e

B.2 Monte Carlo Simulation . . . . . ... ... ... ... . ... ... .....
B.2.1 BSEuro . . . . . . . . .
B.2.2 MCsim . ... . . . e

12

14
14
16
16
18
18
19

19



1 Introduction

This paper introduces two intimately related subjects, solving stochastic differential equa-
tions and pricing financial options. Specifically, it looks at numerical methods to simulate

1t6 processes specified by the equation
dXt = a(Xh t)dt + O'(Xt, t)th

and applies this simulation technique to price Asian options, where unlike for European and
American options, no general analytic pricing formula is known.

Pricing options is one of the central problems in Finance. In 1973, Fisher Black and My-
ron Scholes published the now celebrated the Black-Scholes model and formula. Their paper
gave simple formulae for the true value of a European call option under the assumption that
prices follow geometric Brownian processes. Since then, the options world has seen explosive
growth in several directions. An entire academic industry has developed around developing
new pricing formulae, proposing new models and developing numerical techniques. And, a
jungle of new “exotic” options types has grown, with species like “knock-back,” “Bermudean,”
“Digital,” “Quanto,” and “Rainbow” to accommodate for every bet or hedge position imag-
inable. Asian options belong to this class of exotics, and no general formulae is known to
price them. In absence of this, numerical methods are the only alternative.

Several numerical methods exist to price options. One method is to reduce the option
pricing problem to solving partial differential equation. Indeed, this was originally how
the Black-Scholes formula was discovered, through solving a PDE. Exotic options, however,
rarely have tractable PDE solutions. Instead, generic numerical methods, such as finite
differences, can be applied.

A simpler and more attractive method is Monte Carlo estimation. This is the technique
presented in this paper, and for Asian options, involves simulating the whole sample path of
an It6 process. The principle is to simulate many realizations of stock prices and calculate
the terminal option value for each. The sample average of the realized values converges to
the expectation of the payoff distribution by the Law of Large Numbers. Under suitable
transformations, this expectation is the fair value of an option.

Simulating the It6 processes used in Monte Carlo is achieved through approximation.
Two approximations, the Euler and the Milstein, are derived through application of It6’s
lemma. Numerical theory is is complemented with an introduction to solving SDEs analyti-
cally. Theorems for the existence and uniqueness are presented, and the method of reduction
is used to solve two important SDEs: the geometric Brownian motion, which is used in the
Black-Scholes model, and the Ornstein-Uhlenbeck process, used in the Vaseik interest-rate
model.

The paper is structured as follows. Section 2 is a short introduction to It6 processes
and stochastic calculus. The It6 integral is defined, and the basic tools of It6’s lemma and
isometry, with proof, are presented. Section 3 proves approximation order formulae for the
Euler and Milstein method. Section 4 presents basic theory of existance and uniqueness of
SDE solutions and how to solve SDEs that are reducible. Section 5 looks at two examples of

SDEs, geometric brownian motion and the Ornstein-Uhlenbeck process, and uses reducibility



to solve the SDEs analytically. Section 6 presents basic options theory, proves the Black-
Scholes formula, introduces the Monte Carlo pricing method and shows how to price Asian
options through Monte Carlo simulation.

The following notation will be used throughout the report:

instantaneous drift

instantaneous variance

St asset price at time ¢
So initial asset price
T expiration date of option contract
K strike price of option contract
r annual riskless interest rate
Pr option value at maturity
1) exercise payoff function

(z)* max(z,0)

Q risk neutral measure

2 It0 Processes and Calculus

Many stochastic models in physics, economics and finance reduce to a simple diffusion

differential equation of the form
dXt = /l(Xt,t)dt+J(Xt,t)th (1)

where W, is the standard Brownian motion process, pu(x,t) and o(x,t) are deterministic
and differentiable functions. Such processes are called Ito, after mathematician It6 who laid
the groundwork for stochastic calculus. Equivalently, the integral equation for the above

diffusion is given by

t t
X = Xo +/ w(Xs, s)ds —|—/ o(Xy, s)dWs (2)
0 0

The process (X;) is Markovian in the sense that at any point ¢ in time, (X;)s>+ depends only
on X; and not (Xy)s<:. The stochastic differential dX is interpreted as a limit of increment
Xiyn — Xy, which has mean u(Xy,t)h and variance 02(Xy, t)h. The stochastic integrals are
defined by the limit

n—oo

t
/ F(Xy,8)dW, = lim [ hp(Xs,s)dW,
0

= nlgr;o Z b (X, £) (W, = W, _,)
=1



where h,,(X¢, s) is a simple process! that converges almost everywhere to f(X,t) and W, —

W

Sit+1
The fundamental method of numerically simulating the process (X;) is to discretize the
time interval [0, ] into {0, At,2A¢t,..(%; — 1)At, t}. Letting ¢; = iAx, equation (2) implies

are independent N (0, s; — s;_1) increments.

ti+1 ti+1
Xiy = Xi, + / (X, s)ds + / o(Xy,8)dWs (3)
t t

Our goal is to find good approximations (3) . To do this, we need several two important
tools of stochastic calculus, the celebrated It6 lemma and the Itd6 Isometry formula. It6
lemma is a generalization of the Fundamental Theorem of Calculus to stochastic integrals
and is extremely important in studying them. It6 Isometry is highly useful in evaluating

integrals.

Ito’s lemma Let W; be a Brownian motion process and Xy an Ito process with dX,; =
wlx, t)dt + o(x, t)dWy. Let Yy = f(X¢,t) and suppose [y, fve and f; are all continuous

functions. Then
1
ay, = (M(thfz ot 202<Xt,t>fm) dt + o(X,, 1) fodWV:.

where f, = %Hx =X}

I refer readers to to Shreve, page 168 for a rigourous proof. Now for It6 Isometry.

It6 Isometry For any measurable process X,

E l(/ot XdeS)T = /OtE[Xf]ds

Proof Let (tx)x be a partition of [0,¢]. Approximate the It6 integral by the sum

> X, AW

0<tp<t
Since each AW}, is independent,

2
E( > thAWk> = E > X (AW’ +E > X, Xy AW, AW,

0<t)<t 0<trp<t ty <t

Z XtQkAtk

0<tp<t

Taking the limit of the mesh of (¢x)x to zero gives the result.

1For the sum to converge almost surely, a technical condition for hy, (X¢,t) is required: [ E|hp|?ds < oco.
Loosely speaking, this is the stochastic equivalent of LP integrability for functions.




Example: Integrating fg WsdWs  Let us evaluate

t
I:/ WdWs.
0

If the Ito integral obeyed the Fundamental Theorem of Calculus, then the value of the

w2 |t w2 .. . . A
=| = —+. Unsurprisingly, however, this wrong. We will use Ito6 to
0

integral would be I =
evaluate it.
Let f(Wy,t) = W2 Then f, =2z, fyo =2, ft =0 and p =0, 02 =1 for all X; and ¢.
Applying It6 gives
d(W?) = dt + 2W,dW;

Integrating on both sides gives
t t
/ dW?) = t+ 2/ WedW,
0 0
f(f d(W2) = W2, so rearranging gives
t 2
We—t
/ W dW, — £ L
0 2

This shows that the It calculus is fundamentally different than ordinary calculus.

Now we’re ready to play with approximating (1).

3 Simulating Stochastic Differential Equations

Suppose X; is an satisfies a diffusion equation of the form (1). Let ¢; = i¢At, then we have

for discrete points {X;,}i_;,

ti+1 ti+1
X = Xy, +/ w(Xs, s)ds —|—/ o(X¢, 8)dWs.

t; ti

The challenge is to estimate the continuous time integrals ftt:“ w(Xs, s) and fti”l o(Xy, 8)dWs.
Fortunately, this can be done through a straight forward, albeit algebraically tedious, ap-
pliction of It6’s lemma. Two approximations, the Euler and the Milstein approximation are
derived in this section. The first has error O,(At) and the second has error O, (At)3/2.

Theorem 1 (Euler and Milstein)

Xt.;+1 = th. + ,LL(Xti, tz)At + U(Xtia t)AWt + Op(At) (Euler)
| B ,
Xti+1 = Xti +/’L(th7tl)At +U(tht)AWt + §U(thtl)%U(Xtutl)[(AWt) - At}

+0,(At)*?  (Milstein)



Proof Define the partial differential operators L and L' that operate on f by

Lofzag+1ﬁ+%7 L'f=

of
or 2022 ' Bt s

ox

We can express Ito’s lemma by L° and L' by
df (X;,t) = LOfdt + L' fdW,

We'll apply this to functions i and . Assume the appropriate derivatives exists. Integrating

over [t;, s] yields

w(Xs,8) = u(Xti,tiH/ Lou(Xu,u)dqu/( Lt (X, w)dW,,
tL' ti

o(Xs,s) = J(Xti,ti)Jr/ L%(Xu,u)du+/ L'o(Xy,u)dW,
ti ti

Now substitute p and o into the integrands of

ti+1 ti+1
Xti+1 :Xt,; +/ ,LL(XS,S)dS+/ O'(Xt78)dW5.
t t;

i i

Working on the first integral, | ttf“ u(Xs,s)ds , we have

tiy1 tig1 s s
[ s < f (u(xti,tm [ 2uxu e+ [ L1u<Xu,u>dwu> s
t ti t; t;

i i i

tit1 s tit1 s
~ u(Xti,ti)At—kLO,u(Xti,ti)/ /duds+L1u(Xti,ti)/ /quds
ti ti t'i ti

The first termpu(Xy,, ¢;)At is a first order approximation to the desired integral, and the
rest is a lower order correction that we can regard as a error term. The second term,
LOu(Xy,, ;) fttv”l [ duds is O,(At)?because

tita s Atg
/ / duds = —
ti t; 2

and L°u(Xy,,t;) is bounded. The third term L'u(Xy,,t;) ftti'i“ ftj dW,ds is O,(At)3/? since

tit1 ps tit1 3
/ / AW,ds — / (tis1 — w)dW ~ N0, {A;} )
ti t; tq

Thus the integral can be written as 371/2(At)%/2Z, where Z is a standard normal random
variable, and clearly this is O,(At)%/2.

Similarly for the second integral,

tit1 tity s s
/ o(X,, 8)dW, = / (a(Xti,ti) +/ L0 (X, u)du +/ Lla(Xu,u)qu> ds
t ts t t;

i i 7



i+1

Q

tiy1 S
o (X, t) AW, + L0 (X4, 1) / / dudWy + L'o(Xy,, t;) /
t; t;

t
t;

/ AW, dW
ti

O'(Xt“ti)AWt + %J(Xt“ti) a

%J(Xti,ti)[(AWt)z — At] + 0, (At)*/?

since

tit1 s 1
/ / qude = 5[(AW,§)2 - A,t},
ti t;

Lo0(Xy,u) = o(Xy,, ti) + Op (A2, Lro(X,,u) = U(Xu,u)%o(Xu,u), and

tri+1 S
/ / dudW, = O,(At)3/2,
ti ti

Putting these terms together, we have the Milstein approximation to increment AX; given
by

1
AAXt = /’I’(Xti’ti)At + U(Xti’ti)AWt + §U(Xtiati)%o—(Xtmti)[(AWty - At] + OP(At)?)/Q

4 Solving Stochastic Differential Equations

While we are now armed with two methods to simulate It6 processes, simulations do not con-
stitute solutions in a stochastic setting. Rather, they are sample paths of solutions. Knowing
a closed form solution is useful, and this section presents basic theory of analytically solving
SDEs. Specifically, for a given differential equation dX; = pu(X, t)dt + o( Xy, t)dW;, Xo =
Zo, we seek a solution of the form X; = f(¢t, W) that, if it exists, is unique.

Clearly, the solution depends on how “nice” u and o are. In ordinary differential equation
theory, Lipschitz continuity is a sufficient condition. The following theorem states gives us
that this is also the case with SDEs.

Theorem 2 (Existence and Uniqueness) If p(z,t) and o(z,t) are continuous on and
if for some finite K,

1. |p(z,t) — ply, )| + |o(x,t) — o(y,t)| < K|z —y| (Lipshitz Continuity)

2. |p(z, )| + |o(x,t)] < K1+ |z]) (boundedness)

then for any T > 0, the SDE has a unique solution (Xy)o<t<r. The solution satisfies

IE:{Sllpo<t<TXs2} < 00.

4.1 Reducible Stochastic Differential Equations

There is a rich class of SDEs that are solvable through the method of reduction. The idea
is find an invertible transformation f : [0,7] x R — R such that Y; = f(X3,t) satisfies the
SDE

dY; = r(t)dt + q(t)dWy, Yo = f(0,29) = 0.



Solving this SDE is straightforward. Integrate both sides with respect to t,

vi- [ r(s)ds + / gls)aw,

and given f~1(t,x) exists, we have X; = f~1(Y;,t). The following theorem gives conditions

on which p and o give reducible SDEs and the partial differential equation that f solves.

Theorem 3 (Method of Reduction) If the coefficient functions u(x,t) and o(x,t)

satisfy the partial differential equation

2 (ke (2 110)} o

There exists a transformation Yy = f(Xy,t) that transforms the stochastic differential equa-

tion
dXt = /J,(Xt,t)dt + O'(Xt,t)th, X() =X

to the stochastic differential equation
dY; = r(t)dt + q(t)dW;, Yo = f(0,20) = 0.

The coefficients r(t) and o(t) of the transformed equation are determined by the system of

partial differential equations

dq(t) 1 Oo(z,t) 0 (u(xz,t) 100
i q(“{ o b0y (a(m,t)Qam(t’x)>}

0 = do {525 - e g o [ gt

and the transformation, f : [0,T] x R — R, by the system of partial differential equations

of o q®)

%(x,t) - o(x,t)

of B p(z,t) 100
E(m,t) = r(t)—qt) {a(z,t) — 281:(1%,;6)} )

The next section provides two examples of solving SDEs by the method of reduction.

5 Examples and Simulations

This section presents two famous examples of diffusions: Geometric Brownian motion and
the Ornstein-Uhlenbeck process. The SDE is solved analytically, and numerical approxima-

tions are used to simulate and plot sample paths of the solution.

5.1 Geometric Brownian Motion

Let X; be a solution to



dXt = TXtdt+O'Xtth. (4)

Then X; is called a geometric Brownian motion. Heuristically, if o =~ 0, we have X; ~ r Xdt
and thus X; increases exponentially at rate approximately r. As X; increases, the volatility
o X; linearly increases.

This SDE has been widely used to model stock prices. Recall the formula for asset

return over s to t: ry; = log%; solving gives P, = P,e"=* and letting s converge to t yields

dP, __
dt

with variance o, then the variation in P; due to &; for small At is P,et. The variance grows

r¢ Py, where r; is the instantaneous interest rate.r; = 7 + &¢, &; is a iid noise process

at rate proportional to P;.

The celebrated Black-Scholes model, which we’ll see later, assumes stock prices follow
Geometric Brownian motion processes. Figure (1) shows a simulated Geometric Brownian
motion price path and the S&P 500 stock index over the last 50 years. Underneath each
are the realized returns. At first glance, geometric Brownian motion seems to model prices
well. Indeed, it is a good first order approximation - prices grow exponentially and variance
increases proportionaly to price level. However, looking at returns shows clearly that the
model significantly strays from empirical relality. There are far more extreme points in real
data than normality predicts. Also, returns seem to fluctuate wildly in some periods and
remain tame in others.

Now to solve this SDE. The solution is

X, = Xoe(r_"2/2)t+‘jwt.

Proof  (Method of reduction) We have p(z,t) = ra and o(z,t) = ox. This SDE is

reducible since

9 (1 00r 0 (re 10m\\_ 0 [, 10\
oz Loz ot "0z \ox 2 Ox - Oz 79 a2 [ T
The transformed SDE functions r(¢) and ¢(t) solve
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Thus, the transformed SDE reads
dY; = Rdt + QdWy, Yo = f(0,20) =0

whose solution is Y; = rt+QW;. All that is left is to find the transformation f(x,t). f solves

10
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Figure 1: Left: Simulated Prices and Returns of Geometric Brownian Motion,
Right: Prices and Returns of S&P 500 index from 1950 to 2006.

the PDF system

@ of

Thus f(z,t) = %log(x) + ¢o. By the boundary condition f(zg,0) = 0,co = %1og(x0) and

consequently

Q x
log(—

g o

flz,t) = )

The inverse exists: f~1(x,t) = moe%z.lnserting the transformed process Y; yields
Xi = M (Yo t) = woe® HHAWY

Now, %R =r— %02, thus the final form of our solution is

1,2
X, = xge(r— 20 )tHoWs

. > 2 .
An easy exercise shows that EX; = xge™ and Var X; = x3e?" (€2 — ¢!7). A simpler

11
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Figure 2: Geometric Brownian Motion given by SDE solution (black) and Euler
approximation (red)

and more intuitive method to solve the geometric Brownian motion SDE using coefficient
matching is presented in the appendix. This method, however, only works for an extremely
limited class of linear SDEs.

Figure to compare a sample geometric Brownian motion given by the solution

5.2 Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process is a simple mean-reverting diffusion. It has dynamics spec-
ified by

dXt = Q(M — Xt)dt + O'th

where g is real, 8 > 0 and o > 0. p is best considered a long run tendency point. Where
X = p, the process has zero drift and is locally martingale. The process does not converge
to X} since the dW; term still causes the process to wander randomly about p. 6 determines
the strength of reversion and, consequently, the time-lagged correlation structure. The
model has been widely used in academic literature to model both physical and economic
processes. It has modelled temperature fluctuation (Keilson and Ross) and interest rates
(Vasicek) among others.
The solution to this SDE is

t
X, = Xpe 0 + (1 767015) +/ oe? = aw,
0

12



Proof (method of reduction) We have p(z,t) = 0(u — z) and o(z,t) = o. This SDE is

reducible since
0 0 (0(p—x) B
% {0 — U% (0‘ — 0 = O

The transformed SDE functions r(t) and ¢(t) solve

d‘chg) = Oq(t) = q(t) = Qe",
o 9(u—gw)q(t)+(fc—?>q'(t>
B zo)g(t) _ 0Qu — wp)e”

Thus, the transformed SDE reads

dY; =

_ ot
Mdt + Qe AWy, Yo = f(0,39) =0
ag

whose solution is o ot
_ -1 -1

All that is left is to find the transformation f(z,t). f solves the PDF system

o ot o 0 ot _ ot
Wiy = L0 U= P = flat) = flao,0) + T2
and inverting to x = f~1(y,t) yields
ro = Q N0t {y f(o JJ())}
t
=X, = Q et{Yg Yo} = :E0+Q 9t/ dYs

_ o L9Q(u — xo)e s
—xo-l-Qeet{/O p d+/Q€ dW}

_ w06—9t+u(1_e—9t)+g/ =t aw,
0

The expectation of X; is easily see to be EX; = Xge ™ 4 pu(1—e~%) since E ft =W, =
0. The covariance cov(Xs, X;) is harder. Let s A ¢ = min(s,¢). We can use It isometry to

calculate the covariance function by

cov(Xs, X)) = E[(X, - E[X])(X: —E[X4])]
= E| / ey, / oe? D aw, |
0 0

s t
026_9(8”)E[/ UeG“qu/ ae? dW,]
0 0

13



0.0 0.5 1.0 15 2.0

Time

Figure 3: Simulated Ornstein-Uhlenbeck process with parameters p = 0, § = 1,
o = 0.3, n =1000; green: Xy =2, red: Xo =0, blue: Xy = —2.

2
= %e_g(sﬂ)(e -1).

The variance is )

Var(X,) = 55(1 - ¢

which is bounded by g—;. Thus the process admits a stationary probability distribution, in

contrast to Brownian motion.

6 Options Theory

The problem of pricing options is one of the central problems in finance. Nearly all financial
instruments can be grouped as either assets (shares, bonds) or derivatives of assets, which
are functions of shares and bond prices. Derivatives can be further decomposed to either
forward contracts and options. Pricing forward contracts is relatively easy compared to
option pricing. The latter has bread a jungle of dense theory, heavily borrowing from
stochastic analysis, integration theory, partial differential equation analysis and statistical

physics. Option pricing is as complicated as rocket science.

6.1 Options Basics

A call option is a contract that gives the holder the right (but not the obligation) to buy a
fixed amount of an asset at a specified time in future for an already agreed price, the strike
price, from the seller (or writer of the option). The opposite option is a put option. By
buying it, the holder receives the right to sell a fixed amount of asset to writer for the strike

price. Here the writer is obliged to buy the asset while the holder may decide on selling or

14



not.

A European call option on one share of stock offers the buyer of the option the right to
by this share at time ¢ = T for strike price K = 0 which is fixed at time ¢ = 0. If the share
price S; at t = T exceeds the strike price, then the holder can exercise the option and buy
the share at price K < Sp . He can then immediately sell the share at the market price Sp
and make a profit of Sp — K. If, however, we have S < K, then the option holder will
not exercise the option since he can buy the stock at an equal or lower price than K. In
this case, the profit from holding the option is zero. Therefore, the profit V from holding a
European option is given by

V.= (Sr - K)*

where (z)* denotes max(Sr — K, 0). Similarly, the payoff for a put option is
Vo= (K —S7)".

In general, let f(t, K) denote the payoff function. Several alternative option type payoffs

are given below.

American call : (S, — K)t, 7€[0,7)

T +
Asian call (ST - T_l/ Sy dt)
0

+
T
Fixed-strike average call : (T_l / Sy dt — K )
0

The above payoffs are the intrinsic value or price of the option at maturity. What is more
interesting is the there price before maturity, say at time ¢ = 0. when the option is written.

The fair price?, P, of the option is given by the expectation
P =Eq{e " f(S7)}

where r is the risk free interest rate and the expectation is over the probability measure Q.
What is Q7 It is not the physical distribution of price St that is specified by the model for
(St):. Instead, it is the “risk-neutral” measure. Under @), each asset traded in the economy
has a fair price that traders can agree upon, irrelevant to their subjective beliefs about the
direction of future prices. Indeed, under @), each asset earns an average return rate equal
to 7. Every asset option has fair price at t = 0 equal to the @ expectation of f(Sr) times
by the discounting factor e~"7. Furthermore, at these prices, the market does not admit
arbitrage. Conversely, no arbitrage implies the existence of (). This is the Fundamental

Theorem of Arbitrage Pricing and forms the bedrock of all option pricing theory.

2This is the price that rules out arbitrage opportunities in the market. Under the Black-Scholes model, the
price is unique. Under more complicated models, for example, the trinomial market model, an interval of fair
prices exists. Also, some models, such as Mandlebrot’s random multi-fractal model, arbitrage opportunities
exist.

15



6.2 The Black-Scholes Formula

A formula for European option prices under some limiting assumptions exists: the celebrated
Black-Scholes formula. The main limiting assumptions (“The Black-Scholes Model”) are as
follows. First, the market has a risk free asset with return r; > 0 and at least one stock, i.e.
the market is complete. Second, the price of the stock evolves by the geometric Brownian
motion

dS; = pSpdt + oS dWy. (5)

The volatility o is constant, however u; and r; are not necessarily. For simplicity however,

take p; = p and r, = r. Now for the result.

The Black-Scholes Formula The fair prices of European call and put options with strike
price K > 0 and maturity T are

P.=Sy-®{d} —K-e"T®{dy}, P,=K e ""®{~dy}— Sy {dy}

In (i) +(r+ l02)T
di = b 2 , dy=di—oVT
! o T -

where ® is the standard normal cumulative distribution function.

Proof Assume the market admits no arbitrage. Then by the fundamental theorem of
arbitrage, there exists a risk neutral measure. For all assets in the economy, under this risk
neutral measure, p = r and

dSt = TStdt + O'Stth.

Let Si = e "T'Sy, the discounted stock price at time 7. This has log-normal distribution
with mean log So— 0T /2 and variance 02T and P = E(S4—Ke~"")*. A routine but lengthy

integration by parts yields the formula. See [1] for the calculation.

6.3 Monte Carlo Pricing

Monte Carlo simulation is a powerful numeric technique to evaluate the payoff expectation.
The concept is very intuitive: simulate many price paths of the underlying asset with respect
to a given model, then calculate the payoff of each simulation and approximate EX by the
sample mean X.

It is easy to implement, but computationally intensive. It is especially useful in pricing
options where producing a formula for the price expectation is extremely difficult or impos-
sible. Such cases frequently arise when pricing non-European style options, for example, the
with so-called Asian and Knock-back options. This is also true when relaxing the Black-
Scholes assumptions of Gaussian returns with constant volatility. The simplest estimation

algorithm is as follows.

Basic Monte Carlo Algorithm
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Figure 4: Monte Carlo Simulation in practice. Simulate thousands of realizations
of the risk-neutral price path and for each, calculate the discounted terminal
payoff and estimate the expectation by the sample mean.

1. fork=1,2,...,.N

(a) generate price path Sk) = {80, SAty s S’T}(’“)
(b) compute payoff Vj, = f(S*))
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This algorithm is implemented in R function, MCsim. A plot of several price paths gener-
ated by the algorithm is shown in figure (4).

The basic Monte Carlo estimator, while unbiased, Ursula has a large variance. For
options where each Monte Carlo point estimate contains many sampling operations, such as
with Asian options as we’ll see later, finding a way to reduce variances attractive. A large
literature is devoted to Monte Carlo variance reduction method. See [2, 3] and [1] for an
overview.

Two attractive techniques specifically applicable to option pricing are stratified sampling
and importance sampling. One reason why the variance of the Monte Carlo estimator is
high is the large interval in which the payoff function is zero. Naturally we would prefer to
concentrate the sample in the region where the payoff function is positive and, where it is
more variable, use larger sample sizes. Stratified sampling works by tilting the distribution
of S so that more sample payoffs are positive, then un-tiling by applying a discounting
factor to ensure the estimate remains unbiased. Importance sampling tilts the underlying
distribution so that important aspects, such as tails, are sampled more frequently. The
simulation outputs are re-weighted to ensure the estimate is unbiased, and these weights
are given by the Radon-Nikodym derivate of the underlying distribution with respect to the

simulation distribution.
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6.3.1 Example: Pricing a European Call

Suppose we wish to price a European call with parameters K = 100, Sy = 100, » = 0.1,
0 =0.1 and T'= 1 year. Recall that under the Black-Scholes model,

St = Sopexp([r — 0% /2]T 4+ cWr)

and V = (Sp — K)*. This payoff is independent of the paths (S;);<r. Rather, all that
matters is St and the distribution of this is given above. We can price the option with

n = 10000 simulations in R using the code:

ST<-100*exp((0.1-0.172/2)*1+0. 1*rnorm(10000) )
Discounted<-exp (-T*r) *pmax (z* (sim-K) ,0) }

mean (Discounted)

[1] 10.30117

Or, using the MCsim function:

MCsim(S=100,K=100,r=0.1,sigma=0.1,n=10000,type="ce’)
[1] 10.30096

These calculuations took less than a second on a P4 1.7 ghz laptop. The value using the

Black-Scholes formula is

BSEuro (S=100,K=100,r=0.1,sigma=0.1, type=’ce’)
[1] 10.30815
The difference between the estimates is 0.7 cents, which is less than the common minimum

price unit (“tick”) of 1 cent.

6.4 Asian Options

Asian options are derivatives with payoff which depend on the average of the underlying

stock price. Specifically, Asian options have payoffs for call and puts given by
= 2+ - +
Vo = (Sr=S7)", V,=(5-57)",

where § = 7! fOT S, dt, the continuous time arithmetic average of S;. In discrete time, S =
% Zthl S¢. Thus, unlike European, Asian options are path-dependent - both the terminal
price St and the path (S:)i<r determine the terminal payoff. If S; follows a geometric
Brownian motion, then S is the infinite sum of infintesimal lognormally distributed random
variables, and the sum or average of log-normal random variables is very difficult to express
analytically. There is no general closed form solution for the price of this option [4]. There

are, however, analytic solutions where S is the geometric average, that is, in discrete time
S = (818,...57)/"

Here, S = exp{7 Zthl log(S:)} and if S; are lognormally distributed, we are summing
normal random variables in the exponent. Thus the geometric average is lognormally dis-
tributed.
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Our objective is to numerically price arithmetic-average Asian options. Unlike Monte
Carlo pricing of European options where we could price by simply drawing from the Sp
log-normal distribution, now we must simulate entire Brownian sample paths to obtain the
distribution of S. The computational burden of doing this is very large. Each Monte Carlo

point estimate now comprises hundreds of sampling operations instead of just one.

6.4.1 Example: Pricing an Asian Option

Consider the option with the same parameters as before: Sy = 100, K = 100, r = 0.1,
oc=0.1and T =1. Set N = 10000. We can price this option in R by

n<-round(N/2)

sim<-matrix(nrow=N,ncol=n)

Discounted<-1:N

for (4 in 1:N)
sim[i,]<-(sde.sim(+=T,n=n,x0=S,mu=function(X,t){x*r}, sigma=function(x

for (i in 1:N)
R[i]<-exp(-T*r)*max (z*(sim[i,n]-mean(sim([i,])),0)

mean (R)

[1] 2.20230

This algorithm is implemented in MCsim with option type “cas” for call and “pas” for put

Asian options.

7 Conclusion

This paper serves as an introduction to It6 processes, numerical solution of stochastic dif-
ferential equations, and option pring though simulation of It6 processes. Two numeric ap-
proximations of X;, the Euler and the Milstein, are derived through It6’s lemma. It shows
that the Euler has an error order O(At) and the Milstein has error order O(At)3/2. The
Euler approximation is used in conjunction with Monte Carlo methods to estimate the price
of Asian options. The price estimates obtained from Monte Carlo simulation are compared

to the analytic Black-Scholes formula.

A Appendix

A.1 Solving the Geometric Brownian Motion SDE through Coeffi-
cient Matching

The coefficient matching method works only for linear ¢ and o functions. Here’s an example
for geometric Brownian motion. Let Y; = f(W;,t). Applying Itd’s lemma on f (W, t) yields

qv;, = £(0,0) + {%fm(x,t) + il )}t + fula, AWV,

We want dY; = rY;dt + oY;dW;, so matching the coefficients of dt and dW; looks tempting.
Lets try it:
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of(x,t) = folz,t) = flx,t)=pee’™TI®

1 o
rf(z,t) = gfm(m,t) + fi(z,t) = rf(z,t) = §fm(x,t) + fi(z, 1)
Now & fo(x,t) + fe(z,t) = xo%ze‘m"’g(t) + ¢/ (H)0e?® 91 | 50 we have

2
reftta(t) — ieaw+g(t) + g’(t)e"“‘g(t)
2 b

and we conclude that g(t) = (r — %Z)t The solution is thus

f(VVt7 t) = xoe(r_oz/Q)t""UWf,

B Program Code

This section presents all the R-based functions written for the report. The main function
is sde.sim which produces a sample solution to any SDE specified by u(x,t) and o(z,t).
MCsim performs Monte Carlo pricing of European and Asian call and put options using

sde.sim to generate sample price paths.

B.1 sde.sim

Generates a sample solution to any SDE specified by functions u(x,t) and o(x,t) over [0, ]

with with n sample points.

sde.sim<-function(t,n=1000,mu=function(x,t){0},sigma=~function(x,t){1},x0=1,type="Euler”,
plot=T,innov=c()){

dw<-innov

t<-seq(0,t,length=n)

dt<-(t[2]-t[1])

x<-1m

x[1]<-x0

h<-10"-6

if (is.null(innov))
dw<-rnorm(n,sd=sqrt(t/n))

if (type == "Euler”){
for (i in 2:n)
x[i] <-(x[i-1]+mu(x[i-1],t[i]) *dt+sigma(x[i-1],t[i]) *dw]i])
}
if (type != "Euler”){
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for (i in 2:n){
x[i]<-(x[i-1]+mu(x[i-1],t[i]) *dt +sigma(x[i-1],t[i] ) *dw]i]
+0.5%sigma(x[i-1],t[i])
*(sigma(x[i-1],t[i])-sigma(x[i-1]+h,t[i])) /h*(dw[i] "2-dt))

1

if (plot==T)
plot(cbind(t,x),type="1")
return(ts(x))}

B.2 Monte Carlo Simulation
B.2.1 BSEuro

Uses the Black-Scholes formula to calculate call and put European option value with spec-
ified intial price S, strike K, time to maturity 7', annual interest rate r, volatility sigma.

Type “pe” gives the put value, “ce” gives the call value.

BSeuro<-function(S,K,T,r,sigma,type=c(”"ce”,’pe”)){
if (type!="ce” && type!="pe”)
stop("type misspecified: ce|pe”)

d1<-(log(S/K)+(r+1/2*sigma”2)*(T))/(sigma*sqrt(T))
d2<-(d1-sigma*sqrt(T))

if (type=="ce”)
value<-(S*pnorm(dl,mean=0,sd=1)-K*exp(-r*(T))*pnorm(d2,mean=0,sd=1))

if (type=="pe”)
value<-(-S*pnorm(-d1,mean=0,sd=1)+K*exp(-r*(T))*pnorm(-d2,mean=0,sd=1))

result<-list(rbind ("period”=T, current price”=S, strike”=K,
"interest rate”=r, volitility”=sigma, type”’=type),”Option Value’=value)
return(result) }

B.2.2 MCsim

Performs Monte Carlo simulation to price European, Asian and fixed-strike average put and
call options with with specified intial price S, strike K, time to maturity 7', annual interest
rate r, volatility sigma. If “boot”=TRUE, gives non-parametric bootstrap confidence inter-
vals for the price estimate.

MCsim<-function(S,K,T,r,sigma,N,type=c(’ce”,’cas”,"cav”,”’pe”,"pas”,"pav”) ,boot="FALSE"){

z=NA

21



if (type == "ce” || type == "cas” || type == "cav”)

z=+1
if (type == "pe” || type == "pas” || type == "pav”)
z=-1

if (is.na(z))

stop("type misspecified: ce|cav|cas|pe|pav|pas”)

if (type == "ce” || type == "pe”){
sim<-sde.sim(n=N,t=T,mu=function(x,t){r*x} sigma=~function(x,t){sigma*x}}
R<-exp(-T*r)*pmax(z*(sim-K),0) }

else {
n<-round(N/3)
sim<-matrix(nrow=N,ncol=n)
for (i in 1:N)
sim[i,]<-(gen.brown(S, T n,rsigma,type="geo”))
R<-1I:N

if (type == "cas” || type == "pas”){
for (iin 1:N)
Rli]<-exp(-T*r)*max(z*(sim[i,n]-mean(simfi,])),0)

}

if (type == "cav” || type == "pav”){
for (iin 1:N)
Rli]<-exp(-T*r)*max(z* (mean(sim[i,))-K),0)

}

plot(density(R))

if (type == "ce” || type == "pe”){
BS<-BSeuro(S,K,T,r,sigma,type)$O
summary<-rbind(
"Estimate”=mean(R),
"BS exact”=BS,
"variance”’=var(R),
"bias”=(mean(R)-BS))}

else {

summary<-rbind(

"Estimate”=mean(R),
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"variance”’=var(R)) }

if (boot=="TRUE"){
sampmean<-function(p,x) {sum(p*x)/sum(p)}
if (length(R)<=2000)
conf<-abcnon?(R,sampmean)$limit
else
conf<-abenon(R[1:2000],sampmean ) $limit

summary <-list(summary,”Bootstrap Conf Int.”=conf)

}

return(summary)
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